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Molecular Dynamics of Shocks in Crystals with Defects

1 INTRODUCTION

This paper investigates, on the molecular scale, the propagation of vibrational distur-

bances through various two-dimensional lattices, using the techniques of computational

non-equilibrium molecular dynamics. These disturbances will be referred to as "shocks",

as is common in the literature, because, although they have a finite width and a definite

structure, they are thought to be the microscopic analogues of the travelling discontinuities

that are defined as shocks in the macroscopic domain of continuum mechanics.

The motivation behind the work reported in this paper is the desire to understand

some of the peculiar properties of the initiation and propagation of detonations in solid

chemical explosives. A detonation, as the term is usually understood in these contexts.

is a physico-chemical process with a characteristic structure.1 This structure consists.

in a solid, liquid, or gas, of a shock wave or some other localized, traveling disturbance.

followed by an associated reaction front, which separates material that has participated in a

chemical reaction from material that is not yet reacted. The association between these two

traveling interfaces, mediated by the "induction zone" of (usually) compressed, stressed,

unreacted material between them, is a complex interdependence whose nature has been the

subject of many investigations, a few of which we shall discuss below. For now we should

Manuscript approved May 13. 1992.
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merely point out that, on the one hand, the shock is the cause of the reaction front, for in

its passage it creates the conditions which lead to a particular series of reactions, while,

on the other hand, the exothermic reaction front maintains and accelerates the shock by

supplying kinetic and thermal energy.

In the fluid phases, those properties goveraing the nature of the detonation process are

the chemical composition of the material along with its intensive thermodynamic variables,

and, sometimes, the details of the method used to initiate the detonation. In a solid, even

when all of these quantities are held constant, there may still be significant variability

in the responses of a series of samples. For example, in an experiment in which crystals

are detonated by dropping a weight on them, the variability may take the form of a wide

range of initial heights necessary for detonation in apparently identical samples. A possible

source of this variable response might be some unknown and uncontrolled variation in the

experimental conditions, presenting different samples with significantly different initial

conditions, combined with an extreme sensitivity to initial conditions in the system. But

it must be recognized that a sample of solid material, unlike a fluid, is characterized not

only by its chemical composition and its thermodynamic state. The particular spatial

arrangement of molecules constituting each sample makes them all unique. The fact that

the shock, solitary compressional wave, or other disturbance taking part in the structure

of the detonation process is a mechanical mode of vibration supported by the molecular

lattice, whose nature is completely dependent on the detailed structure of that lattice,

implies that the spatial arrangement of molecules must influence the detonation process.

This much is uncontroversial. What may be more surprising is the suggestion 2 investigated

here, that certain minute changes in the molecular arrangement, involving the locations

of just a few molecules, may have a large, even determining, effect on a macroscopic

detonation. This suggestion gains plausibility if one considers that the actual thickness of

the shock front may be only a few lattice planes.3 Therefore the transfer of kinetic energy

from a molecule to its neighbors in the direction of propagation involves the participation

of only a few molecules (along the wavevector direction) in a particular vibrational mode

2
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at any one time.

One traditional theoretical approach to understanding detonations, and the initiation

of a deton. tion by a shock wave, involves a description in terms of thermodynamic variables

that are related by an equation of state for the material.' The passage of the shock heats

the material through adiabatic compression; if the compression is great enough, then the

local temperature will rise to a threshold required to initiate the chemical reactions, and a

reaction front will form behind the shock. In practice, the equations of state for energetic

materials are quite complex, and feature many empirical parameters, whose adjustment

allows the theory to agree quite well with preexisting experimental data.

However, for understanding the detailed microscopic nature of detonations in a solid,

the traditional theories may not be appropriate. At the scale of intermolecular distances,

the usefulness of thermodynamic variables is problematic, and at timescales shorter than

nanoseconds, relations built upon the assumption of thermodynamic equilibrium require

special scrutiny (the rapid approach to thermal equilibrium under some circumstances is

discussed further in section 3.) We should point out that a description based on classical

mechanics, such as that employed here, must also be insufficient, but can form the basis

for more accurate quantum or semi-classical descriptions.

In this paper we examine the point of view, championed by Walker, 4-7 that a shock

in a solid initiates detonation through the mechanical generation of scission forces on the

molecules comprising the solid, breaking chemical bonds, creating a distribution of free

radicals, and supplying the kinetic energy required to initiate reaction. In the light of this

picture of the detonation process, we investigate the interaction of the shock front with

the lattice structure, using numerical molecular dynamics. We are particularly interested

in the effects of certain types of lattice defects on the shock initiation mechanism. We

include no chemistry in our model; the "molecules" are point particles interacting through

Lennard-Jones potentials. Hence our current connection to the detonation problem is the

exploration of how the conditions leading to bond scission and subsequent recombination

are established. The following stage, of reaction and shock acceleration, will be treated in

3
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a subsequent paper, which will report on simulations employing a chemistry model.

There have been reported a number of interesting molecular dynamics calculations that

bear, in one way or another, on the problem of the shock initiation of detonations in solids.

Karo et al." simulated a small lattice of approximately one hundred molecules arranged in a

two-dimensional square-symmetric lattice, interacting through either "endothermic" Morse
potentials or "exothermic" polynomial potentials. A shock was launched by simulating a

flying plate consisting of a smaller lattice of identical construction to the main lattice. (This

is quite similar to our method of shock launching in this paper.) The main conclusions were
that the shock was quite narrow on the atomic scale, that the temperature of the lattice was

unimportant, and that the free surface at the end of the finite lattice was a crucial feature,
as the shock's interaction with this surface resulted in a spalling off of a large chunk of the
crystal. The behavior subsequent to the spalling depended on which potential was in use.

With the endothermic potential, there was little interesting activity after the separation
of the chunk, but with the exothermic potential, a violent reorganization of the lattice

occurred.

While there is little reason to question the reliability of the general character of the
results reported in these seminal papers, especially the importance of free surfaces, there
are several numerical issues that should be discussed. Unfortunately, issues of convergence

and accuracy are not treated in these references: conserved quantities are not mentioned,
nor are the methods of integration. Instead of physically faithful additive potentials,

the authors employ two different first- and second-neighbor potentials chosen to make

the initial lattice stable. In addition, as the lattice undergoes its natural distortion and

molecules acquire different sets of close neighbors, they are not allowed to interact with
these new neighbors. Instead, the original table of bonds is used throughout the calculation.

As the authors point out, this leads at times to molecules passing through each other
without interaction. (Indeed, this is a statistical possibility, albeit of low likelihood,9 with
the method we employ, as discussed below.) One of our goals in the work reported here

is to discover which of these results survive the application of more modern numerical

4
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methods applied to somewhat more realistic simulations.

Later,"° using the same numerical method, these authors studied a shock in a lattice

interrupted by a large gap consisting of a region with no molecules. As before, they

observed spall from the free surface, with this time the spalled molecules reaching the

second free surface beyond the gap and launching a second shock. This was an attempt

to simulate efficiently the behavior of a true void in a crystal, which would be surrounded

by the lattice on all sides and make up a small fraction of the lattice. As we discuss in the

section 3, our simulations of small true voids included in a large lattice lead to somewhat

different conclusions from simulations employing a gap.

In more recent, related work, these authors and others11- 13 embed a computational

surrogate for a polyatomic molecule into a simple host lattice, and show how the passage

of the shock pumps energy directly into some of the vibrational modes of the molecule.

This pumping could lead directly to bond scission in a real material, in a region that is

definitely not ergodic, and where no thermodynamic temperature can be defined.

Also relevant is the work of Tsai and Trevino" on a diatomic perfect crystal in the form

of a long filament with a small cross-section. Exothermic bond breaking was simulated

through the use of bound and free compound Morse potentials, and the shock was formed

by heating the first six crystal planes. The initial temperature of their lattice was set at just

below the threshold of spontaneous dissociation; the heating caused dissociation directly,

the reaction spread by thermal conduction and drove a shock wave into the filament. They

kept track of the stresses and examined the partition of kinetic energy in the induction

zone, concluding that thermal equilibrium was not reached before dissociation took place.

There is no discussion of numerical accuracy or the treatment of distant neighbors, although

presumably the expediency of imposing a cutoff distance on the potentials, as adopted in

a previous paper, 15 was used here as well.

Several authors have demonstrated that the typical quasi-steady detonation structure,

described above, is predicted by molecular dynamics models, with the exothermic reactive

process modeled either by classical potentials acting between diatomic bonds"' 9 or by

5
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a more elaborate procedure that captures some of the features of the quantum chemical

processes involved. 1 -21 All of these calculations involve perfect crystals, and although some

of them examine the effects of lattice geometry, shock direction relative to lattice symmetry,

etc., none of them deal with the action of crystallographic defects. A recent exception is

the work of Maifre and Peyrard,22 which deals with the ability of a developed detonation

structure to traverse grain boundaries, voids, and other localized defects. However they

do not deal with the effect of defects in the transition from a pure shock to a detonation.

Another exception is the recent work of Tsai,2 which will be discussed below.

2 METHOD

Our model system consists of an array of point particles, each with a specified initial

position and velocity vector, arranged in a two-dimensional space with either periodic

or free boundary conditions in both directions. The algorithms were chosen for their

convenience and efficiency on the computer used, the Connection Machine CM-200, which

consists of a large number (4096, 8192, or 16384, depending on configuration) of processors,

each with its own set of locally stored data, updated in parallel according to instructions

from a controlling, "front-end" computer. Efficiency consists here largely of maximizing the

proportion of code that executes in parallel, which entails minimizing the manipulation of

front-end (global) data and maintaining careful control over the pattern of communication

among processors.

Forces between particles were represented by Lennard-Jones potentials. The solution

of the complete N-body problem was not attempted; rather, the short-range nature of the

Lennard-Jones potential was exploited to limit the distance over which interactions had

to be computed. The particle data was distributed onto a data structure known as the

Monotonic Lagrangian Grid (MLG).' This is an object tracking and sorting technique

where each particle is associated with a pair of integer indices i and j, and the assignment

is ordered such that the coordinate z increases monotonically with i, and y increases

6
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monotonically with j. Monotonicity was enforced after each update in particle positions

by a parallel version of the swapping routine described in reference 24. The advantage

of this method is that, at each timestep, a particle's neighbors can be identified quickly

by cycling over a predetermined region of i - j space, rather than by searching through

coordinate space with an expensive comparison of particle separations.

Each physical processor on the Connection Machine can be divided, in software, into as

many virtual procesors as memory will allow. When we refer to a "processor" from here on,

this should be taken to mean "virtual processor". One particle was associated with each

processor, which stored the particle's position and velocity coordinates, as well as any other

information unique to the particle. We also stored a near neighbors template 4 in each

processor; this is an array that stores the position information for each particle's neighbors

in grid-index space. Once the template is filled, the total force vector acting on each

particle and the update in position is computed for all particles entirely in parallel, with

no additional interprocessor communication needed for the rest of the timestep. After

each regeneration of the MLG by the swapping routine, the template is rebuilt; thus

each processor-particle always has a locally stored, updated list of the coordinates of its

near neighbors. The use of the MLG is one of several available efficient schemes for

replacing a time consuming search for the spatially proximate neighbors of each particle at

every timestep. However, as alluded to in the Introduction, its use can lead occasionally

(but infrequently) to the problem of missed near neighbors, 24 particles that are spatially

close but not included in the neighbor template. When these near-misses are detected

by a failure of energy conservation or repeatability, we redo the calculation with a larger

template. Thus the template size is treated like the computational timestep, both of which

are adjusted to keep the calculations stable and accurate.

The procedure for filling up the template at each timestep is an important determinant

of the overall efficiency of the algorithm. Interprocessor communication between neighbor-

ing processors happens to be far more efficient than between more distant processors, so

we fill the template using a sequence of coordinated data moves between neighboring pro-
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cessors only. The total number of these parallel move operations is equal to one less than

the total number of elements in the template array; therefore the total time required to fill

the template depends on its size, not on the number of particles (assuming that the ratio

of virtual processors to physical processors remains constant). Part of the communication

sequence is diagrammed schematically in figure 1.

As the studies described in this paper were being carried out, the computer hardware

and system software being used was evolving. Fortunately, only one of these changes needs

to be discussed here: initially, the C mnection Machines that were used for these calcula-

tions were equipped with floating-point accelerators that operated on 32-bit numbers only;

more recently, we were provided with 64-bit accelerators.

For reasonable efficiency, it is necessary to restrict the precision of floating point num-

bers to the word size of the accelerator. Therefore, some of the results reported here were

performed with 32 bit arithmetic, some with 64 bit, and some of the 32 bit calculations

were redone with 64 bits ("double precision") when that br .rame available. The small dif-

ferences we observed in particle data between the two precisions was not significant enough

to affect our conclusions. The chief advantage to the greater precision will be for future

calculations, which we will be able to carry out for longer times before the accumulated

errors become unacceptable.

We found that single precision arithmetic limited the accuracy with which energy can

be conserved, and made the extra accuracy of higher-order time integration methods su-

perfluous, and their use needlessly time consuming. Therefore some of the results reported

here were calculated with the simple explicit Euler method. We were able to acheive sta-

bility with this method using a reasonable timestep. The consequence of the limitation

of precision is that energy is conserved only to approximately one percent in the 32 bit

calculations. With double precision arithmetic, it became advantageous to use a higher-

order integrator. We have used both the leapfrog method (described in several places, for

instance25 ) and the third order Verlet formula? combined with a velocity corrector de-

scribed by Beeman. 27 The advantage of this method (described at the bottom of page 138

8
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of reference 27) is that the velocities do not have to be permanently stored, and need only

be calculated when they are required for a data dump or a check of the kinetic energy.

Our algorithm with these integrators can conserve energy to one part in 10', in actual

calculations.

We have performed calculations with three different system sizes, "small" grids of 212 or

213 molecules distributed among an equal number of physical processors, and a "large" grid

of 215 molecules distributed among 214 physical processors, which is the largest processor

set available to us. (Our original machine, with two banks of 212 processors, was replaced

partway through th:,- project with one of two banks of 213 processors.) In both cases each

molecule was assigned its own virtual processor. All else being equal, the large grid should

take approximately twice as long to simulate as the small grids, because it is the ratio of

virtual to physical processors that is significant. On the small grids, with five neighbors

in the template in each direction, the calculation took 0.67 seconds per timestep. On the

large grid, a five-neighbor calculation took 1.0 seconds per timestep and a seven-neighbor

calculation took 2.0 seconds per timestep. We have verified several of our runs with

equivalent calculations on NRL's Cray X-MP, using a well-vectorized code. With 4096

molecules, a five-neighbor template takes 2-2.4 seconds per timestep; with larger system

sizes, the disparity between the two architectures can be expected to grow dramatically. 28

3 RESULTS

It is difficult to compare directly the various molecular dynamics simulations that can be

found in the literature, due to the varying sets of units employed by different authors,

along with differences in potential parameters, lattice spacing, initial conditions, etc., each

of which can have a nonobvious effect on the evolution of the system. Although the

large number of parameters characterizing a molecular system makes a simple resort to

dimensionless numbers impossible, it may be useful to introduce one such number, which

can be used to organize the results concerning the type of molecular dynamics configuration

9
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used in this paper.

We have an array of molecules with forces between them derived from a Lennard-Jones

potential,

0 = 4e [(a/r)" - (a/r) 6]

so the force, F, is given by

o 12 C61 d2r

F d- = 4eI-12 +6
dr L -d-2

by Newton's equation of motion. In the above two equations r is the distance from the

molecule, m is the molecular mass, t is time, an and e are the two parameters char-

acterizing the potential. In order to make the -- .ation of motion dimensionless, we must

introduce scales appropriate to a system excited by a flying plate:

d = interparticle spacing V = plate velocity r = d/V

p = particle mass E = pd2/r = energy unit.

After making the substitutions

r --+ r'd f --, e'1 t --+ t'r m -m'i a --* aid

and removing the primes from the now dimensionless variables, the equation of motion

becomes

£-4 [-12 a12/r13 + 6a6/r'] M= r

where

emerges as a new dimensionless number, apparently relating the kinetic energy of the

impacting molecules to the binding energy of the intermolecular potential.

In all of the calculations presented here, e = 0.0223, a = 0.891, the plate velocity =

2.0, the intermolecular separation at equilibrium = 1.0, and the particle mass = 4.0, giving

10
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C = 727.3. It may help put things into context for some readers if we scale our variables

to the values appropriate to solid argon, a substance commonly discussed. In this case the

plate velocity scales to 4258 meters/second, one time unit is 0.88 x 10- 13 seconds, and one

distance unit is 3.8 A. From here on we shall use the dimensionless units.

Figure 2 shows a sequence of molecular configurations as a plate-launched shock en-

counters a pair of voids, producing a great deal of disorder. The same initial conditions

in a system without the voids lead to the shock traversing the crystal intact and leaving

it undisturbed. We see here that the voids disturb the coherency of the shock, trans-

forming its organized, x-directed (horizontal) motions into a thermalized, two-dimensional

(x - y) motion; beyond the defects, the shock continues as several disconnected pieces. The

progress of the shock can perhaps be more dearly visualized in figure 3, showing profiles

of the horizontal velocity along different lines through the crystal. That these disordered

regions are actually "thermalized" can be seen by looking at the speed distribution of the

molecules in the crystal. Figure 4 is a series of speed histograms corresponding to the cal-

culation illustrated in figure 2; superimposed on each histogram plot is the two-dimensional

Maxwell-Boltzman distribution with a temperature derived from the average kinetic en-

ergy of all the particles. At early times we can see the speed distribution dominated by two

values, the near zero speed of the particles locked into the near zero temperature lattice

configuration, and the highest speed, equal to the plate velocity. As time advances we can

see the velocity distribution filling in, but remaining non-Maxwellian. In the last frame

of the figure we have plotted the distribution of a subset of the system at t = 15 (the

configuration at this time is shown in Figure 15), the subset consisting of the particles ii

the chaotic region delimited by z = 15 and x = 42. The superimposed Maxwell-Boltzman

curve corresponds to the kinetic temperature of the subset of particles under consideration;

clearly this region of particles has rapidly attained a thermal equilibrium, indicating that

the collisionality in the chaotic region is high.

A similar calculation can be seen in figure 5, with the square lattice replaced by an

hexagonal lattice. In this case, also, the small void has been replaced by a single va-
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cancy. We can see here that even in a lattice geometry with a higher binding energy, and

with, unlike the square lattice, nonlinear stability against moderate temperatures, a small

imperfection creates a large disruption.

The creation of disordered hot spots from shock-void interaction has also been seen in

recent simulations by Tsai.3 These disordered regions also have the property of being at

a slightly higher density than the equilibrium lattice, as can be seen in the density plot of

Figure 6.

The interaction of a shock front with a mass defect in square and hexagonal lattices

can be seen in figures 7 and 8, both showing the effect of the inclusion of a molecule with

a %50 mass excess. The effects are similar to but weaker than those caused by voids.

We have performed a series of experiments on systems identical to the ones shown

in the figures, but at various temperatures and intermolecular potential well depths. At

very small temperatures the perfect square lattice becomes unstable when struck by the

plate, and begins to dissociate. This is true even if the potential well depth is increased

by a factor of 45. The hexagonal lattice, however, is stable to impact by the flying plate

over a wide range of temperatures, although at higher temperatures the shock front is

less sharply defined. The effects of the various types of hexagonal lattice defects, and

their relative importance, is not affected by temperature, but is strongly dependent on the

intermolecular potential well depth. For a given shock strength and defect type, it appears

that it is possible to increase the well depth to a point at which the lattice remains stable.

It is useful to quantify the concept of the strength of the effect of different types of

lattice defects, or their efficacy in disrupting the crystal when interacting with a shock.

For this purpose we have defined two "disruption factors", to be used with the two lattice

symmetries. The disruption factors should be defined in such a way that the elastic defor-

mation of the lattice due to the shock itself does not make a contribution. Therefore the

disruption factors will be zero for the case of a shock traversing a defect-free crystal that

remains intact.

We can define disruption factors that satisfy these criteria as follows. For the square

12



PHILLIPS et al.: MOLECULAR DYNAMICS OF SHOCKS....

lattice the angular positions of the four nearest neighbors are found. The disruption factor,

X, for each particle is defined as

4
x = Isin cos oI

t=1

where the summation is over near neighbors. For a compression or rarefaction of the

lattice due to the propagation of a shock along one of the principal crystal axes, the
angular positions of the near neighbors should remain 0, ±7r/2, and 7r resulting in a X = 0.

The hexagonal lattice disruption factor must be defined in a slightly different manner.

The angular positions of the six near neighbors of each particle change as the shock prop-
agates through the lattice. In this case the angular positions of the six near neighbors are

first found. The neighbors in the lower half-plane are reflected into the upper half-plane.

The near neighbors are then sorted into order of increasing angle. The disruption factor

for the hexagonal lattice is defined as

X = sin 01 + sin(03 - 02) + sin(Os - 64) + sin 06 .

In the case of a shock passing through a hexagonal lattice causing only a compression or

rarefaction along the shock direction, 01 and 06 should remain 0 and 7r, respectively. The

angles 03 and O2 should be equal and 05 and 04 should be equal. As in the square lattice,

a zero disruption is calculated.

The total disruption of the lattice is calculated by summing the per particle disruption

factor over all particles. The values of the total disruption correlate well with the apparent

disruption found by visual inspection of the particle positions.

Figures 9 and 10 display X as a function of time for an assortment of crystal defects,
for the square and hexagonal lattices respectively. The greater importance of voids over

mass defects is obvious, as is the unstable growth of the disordered region after the passage
of the shock. Figure 9 also shows that the fastest growing disruption factor is found for

an interstitial inclusion in a square lattice. The spatial configuration for such a system is

13
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shown in figure 11. The closer packed hexagonal lattice does not provide an equilibrium

position for an interstitial inclusion.

Another useful diagnostic summary of the state of the system is a histogram distribution

of the near-neighbor angular positions, such as that shown in figure 12. This figure shows

the evolution of the angular distribution for the case of a vacancy in a square lattice. The

additional peaks which develop in the histogram distributions indicate that the lattice

is beginning to locally undergo a transition from a square to a hexagonal state. For a

hexagonal lattice formed by the displacement of every other column of atoms perpendicular

to the shock direction together with a compression along the shock direction, the near

neighbor angular positions should be ±7r/6, ±r/2 and ±57r/6. The peaks are not found

exactly at these angles since the lattice has a square structure a short distance from the

region of disturbance, resulting in a distorted hexagonal state.

Figure 13 shows a calculation similar to that shown in figure 2, but in a system of

32K molecules, with a distribution of voids whose positions, shapes, and sizes (ranging

from single-site vacancies to voids of nine molecules) are determined by a random number

generator. This is a first attempt at simulating a system approximating a part of a real

crystal, with its natural distribution of defects. The basic process shown in figure 2 is

repeated here: each void, including even the single-site vacancies, becomes the seed of a

rapidly growing region of thermalized disorder, which blocks the progress of the shock.

The shock becomes more tenuous as its organized x-momentum is equilibrated, and, in

the absence of energy available from chemical reactions, eventually dies out.

It is of some relevance to the mechanical bond-scission view of detonation initiation 4

to determine the character of the forces acting upon ind:vidual molecules. While the effect

of intermolecular potentials on the breaking of bonds is complicated and difficult to treat

faithfully with a classical description, we believe we can make some relevant observations.

The quantities of interest are the components of the stress tensor at each molecule; however,

since our "molecules" are point particles, with no preferred directions for bond breaking,

a dilatory force along a certain axis combined with a compressional force along a different
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axis can not be interpreted as an influence that would necessarily lead to the breaking of

a bond. Our compromise is to look at the divergence of the force vector, V F, a quantity

that when positive indicates a net extensional force acting on the molecule. Figure 14 is a

particle position plot corresponding to a frame of figure 2, but indicating which molecules

are experiencing a positive force divergence and which are experiencing a negative V-F. We

see from this figure that the molecules participating in the advance of the shock front are

under a large compressional force, while some of the molecules in the disordered regions

behind the shock have V • F > 0, and so are being "pulled apart" by their neighbors.

However, the magnitude of V - F for these molecules is much smaller than that for the

compressed molecules in the shock front.

The spherically symmetric potential leads to two possible periodic equilibrium lattice

symmetries: square and hexagonal. As can be seen in Figure 15, the agitation created by

the void collapse has provided a section of the lattice the opportunity to relax to the other

periodic state available to it: we see here and in various other runs the emergence of a

localized hexagonal region. We use the term "relax" above because the hexagonal state is

actually of slightly smaller potential energy. Accompanying this relaxation, therefore, must

be the generation of some extra kinetic energy. A somewhat similar shock-induced phase

transition was shown in reference 10 where a potential with two minima acted between

molecules.

The assertion has been made' 0 that in order to understand the shock-void interaction

it is not necessary to place the void interior to the crystal, but, in the interests of com-

putational efficiency (which in this context means reducing the number of molecules that

need to be tracked) it is sufficient to examine the interaction of the shock with a gap in

the lattice. In figure 16 we show the results of a calculation in every way identical with

that shown in figure 2, except that the two voids in figure 2 have been replaced with a gap

extending across the entire crystal; the gap begins at the same x position as the leading

edges of the voids, and has the same width. We can see from Figure 16 that the shock suc-

ceeds in traversing the gap while maintaining its coherency, and proceeds down the lattice,

15
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leaving it undisturbed. Thus we see an essential physical difference between a gap and an

included void: the presence of neighbor molecules transverse to the direction of progress

of the shock causes energy to be removed from the shock and distributed among greater

degrees of freedom, leading to a thermalized region. A related observation has recently

been made by Maffre and Peyrard,2 who demonstrated the ability of a shock-reaction

front structure to traverse a void in a lattice.

In addition to various systems of voids, we have simulated the encounter of a shock

with a type of extended defect sometimes called a slip line; the evolution of the system is

shown in figure 17, which contains a sequence of plots of the particle positions. The slip

line can be seen at z = 24.5; there are also small voids at the top and bottom boundaries

extending from the slip line, created by the periodic boundary conditions. Once again the

voids are seeds of a single growing chaotic region (joined at the periodic boundary), while

it is clear, by inspecting the central portion of the plots, that the shock traverses the slip

line completely intact.

4 CONCLUSIONS

When a shock, sufficiently weak that it is able to traverse a perfect crystal without per-

manently disturbing the configuration of its lattice, encounters a void in the lattice, the

void becomes the site of a rapidly growing thermalized, hot, fluid-like phase character-

ized by a high density and a high degree of collisionality. These characteristics should be

conducive to the onset of chemical reactions, and, we suspect, it is in these regions that

the reactions leading to the development of a shock-detonation stucture begin. It seems

probable, therefore, that the void distribution in the lattice is an important factor con-

trolling the sensitivity to shock-initiation and the character of the subsequent detonation

front development. A perfect crystal should be relatively insensitive. It is possible that in

three dimensions, other types of defects will be seen to be equally important, but that will

be treated in a subsequent paper.
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As discussed above, in order to concentrate on the narrowly defined problem of shocks

and defects in molecular crystals, with as few complications as possible, we have deferred

including a model of the chemical bond and simulated the behavior of moderately large

systems of indivisible molecules with spherically symmetrical potentials. This approach

has the advantage that our results are independent of the details of any particular model

of detonation chemistry or intramolecular behavior, several of which are referenced in the

Introduction.

Although we have been able to resolve several issues concerning the importance of

defects, there are some remaining ambiguities that will not be resolved until we include

polyatomic molecules in the simulations. These have their counterpart in the uncertainties

plagueing our knowledge of the bond scission process in a shocked crystal lattice. If the

polyatomic bonds are broken in the shocked region, due to direct energy transfer from the

shock to vibrational modes of the molecules, then the scission forces discussed above have

little relevance, because they occur in the disordered regions behind the shock. In this

case the importance of the defects is in the thermalization and mixing, which will provide

enhanced opportunities for the free radicals, created in the shocked region, to recombine.

Of particular relevance here is the observation that thermal equilibrium is established

in the disordered region close behind the shock, on a very fast timescale, implying that

equilibrium equations of state may be relevant after all to the detonation process. If the

chemical bonds are not broken directly by the passing shock, then the scission forces may

be responsible for bond stretching and breaking in the disordered region, where conditions

prevail that will enhance the subsequent reactivity. The truth is that neither computational

nor theoretical work to date is sufficient to resolve these uncertainties. We hope that these

questions can be addressed in the next generation of simulations, involving both defects and

chemical reactions in polyatomic crystal lattices large enough to capture their interaction.
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- - ->Step 1 '~ Step 2

Figure 1: The two initial steps in a sequence of parallel move operations;
the simplified case of a two-neighbor template is shown as an illustrative
example, and the templates for six of the particles are included. Each
processor's template is seeded at its center with its own particle's data; the
arrows represent the copying of particle data from a template entry to the
appropriate template entry in a neighboring processor.
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Figure 4: Velocity distribution histograms with superimposed equilibrium
distributions, for the same calculation illustrated in figure 2.
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Figure 6: Scaled, smoothed density plot corresponding to the same calcu-
lation illustrated in figure 2, at t = 13.5. Increasing brightness indicates
increasing density. The three bright patches near the right hand side of the
figure correspond to the compression at the location of the void-interrupted
shock.
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Figure 16: A sequence of particle position plots similar to those in figure 2,
but with the two voids replaced by a continuous gap.
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Figure 16: A sequence of particle position plots similar to those in figure 2,
but with the two voids replaced by a continuous gap.

39



PART ICLE POSITIONS AT TIME i.OOOE+0O PARTICLE POSITIONS AT TIME .OEO

wC " '. I . G

45 4S

30 355

IsI

PARTICLE POSIT IONS AT TIME I.OOOE.OI

600

400


